Hippocampal CA1 circuitry dynamically gates direct cortical inputs preferentially at theta frequencies.

نویسندگان

  • Chyze W Ang
  • Gregory C Carlson
  • Douglas A Coulter
چکیده

Hippocampal CA1 pyramidal neurons receive intrahippocampal and extrahipppocampal inputs during theta cycle, whose relative timing and magnitude regulate the probability of CA1 pyramidal cell spiking. Extrahippocampal inputs, giving rise to the primary theta dipole in CA1 stratum lacunosum moleculare, are conveyed by the temporoammonic pathway. The temporoammonic pathway impinging onto the CA1 distal apical dendritic tuft is the most electrotonically distant from the perisomatic region yet is critical in regulating CA1 place cell activity during theta cycles. How does local hippocampal circuitry regulate the integration of this essential, but electrotonically distant, input within the theta period? Using whole-cell somatic recording and voltage-sensitive dye imaging with simultaneous dendritic recording of CA1 pyramidal cell responses, we demonstrate that temporoammonic EPSPs are normally compartmentalized to the apical dendritic tuft by feedforward inhibition. However, when this input is preceded at a one-half theta cycle interval by proximally targeted Schaffer collateral activity, temporoammonic EPSPs propagate to the soma through a joint, codependent mechanism involving activation of Schaffer-specific NMDA receptors and presynaptic inhibition of GABAergic terminals. These afferent interactions, tuned for synaptic inputs arriving one-half theta interval apart, are in turn modulated by feedback inhibition initiated via axon collaterals of pyramidal cells. Therefore, CA1 circuit integration of excitatory inputs endows the CA1 principal cell with a novel property: the ability to function as a temporally specific "AND" gate that provides for sequence-dependent readout of distal inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of intrinsic hippocampal theta oscillations by acetylcholine in rat septo-hippocampal cocultures.

1. Oscillatory electro-encephalographic activity at theta frequencies (4-15 Hz) can be recorded from the hippocampus in vivo and depends on intact septal projections. The hypothesis that these oscillations are imposed on the hippocampus by rhythmically active septal inputs was tested using dual intracellular recordings from CA1 and CA3 pyramidal cells in septo-hippocampal cocultures. 2. Septo-h...

متن کامل

Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area

Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra c...

متن کامل

Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta Frequency

Hippocampal theta rhythm arises from a combination of recently described intrinsic theta oscillators and inputs from multiple brain areas. Interneurons expressing the markers parvalbumin (PV) and somatostatin (SOM) are leading candidates to participate in intrinsic rhythm generation and principal cell (PC) coordination in distal CA1 and subiculum. We tested their involvement by optogenetically ...

متن کامل

Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5-2 Hz), theta (5-12 Hz), and gamma (35-70 Hz) bands.

Carbachol, a muscarinic receptor agonist, produced three distinct spontaneous oscillations in the CA3 region of rat hippocampal slices. Carbachol concentrations in the 4-13 microM range produced regular synchronized CA3 discharges at 0.5-2 Hz (carbachol-delta). Higher concentrations (13-60 microM) produced short episodes of 5-10 Hz (carbachol-theta) oscillations separated by nonsynchronous acti...

متن کامل

Locomotion-Related Oscillatory Body Movements at 6–12 Hz Modulate the Hippocampal Theta Rhythm

The hippocampal theta rhythm is required for accurate navigation and spatial memory but its relation to the dynamics of locomotion is poorly understood. We used miniature accelerometers to quantify with high temporal and spatial resolution the oscillatory movements associated with running in rats. Simultaneously, we recorded local field potentials in the CA1 area of the hippocampus. We report t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 42  شماره 

صفحات  -

تاریخ انتشار 2005